DESIGN AND DEVELOPMENT MIMO ANTENNAS FOR WIRELESS COMMUNICATIONS

Asmaa Ibrahim Afifi
PhD Student
Dept. of Electronics and Communications Engineering
Egypt-Japan University of Science and Technology

Under Supervision
Prof. Adel Bedair
Prof. Sabah Ahmed
Associate Prof. Ahmed Allam

EGYPTIAN RESEARCH-ORIENTED UNIVERSITY
WITH JAPANESE PARTNERSHIP

www.ejust.edu.eg
Contents

➢ Introduction
➢ Problem Statement
➢ Objective
➢ Proposed Work / Results
➢ Conclusion
• **MIMO** is effectively a radio antenna technology as it uses multiple antennas at the transmitter and receiver to enable a variety of signal paths to carry the data, choosing separate paths for each antenna to enable multiple signal paths to be used.
Why MIMO

The use of MIMO (Multiple Input Multiple Output) technology in wireless communication systems

❖ Increases the channel capacity.
❖ Increases the reliability of wireless communication systems.

These characteristics are achieved without increasing the bandwidth and transmitter power.
MIMO System

Antenna Element

Decoupling Technique
MIMO System

Antenna Element

Decoupling Technique
- One of the most useful antennas at microwave frequencies ($f > 1$ GHz).
- It usually consists of a metal “patch” on top of a grounded dielectric substrate.
- The patch may be in a variety of shapes, but rectangular and circular are the most common.
Advantages of patch antenna

➢ Low profile (can even be “conformal,” i.e. flexible to conform to a surface).

➢ Easy to fabricate (use etching and photolithography).

➢ Easy to feed (coaxial cable, microstrip line, etc.).

➢ Easy to integrate with other microstrip circuit elements and integrate into systems.

➢ Easy to use in an array to increase the directivity.
A **dielectric resonator antenna** (DRA) is a radio **antenna** mostly used at microwave frequencies and higher, that consists of a block of ceramic material of various shapes, the **dielectric resonator**, mounted on a ground plane.
Advantages of DRAs

➢ Compact size.
➢ Low cost.
➢ High efficiency due to the absence of surface wave and ohmic loss.
➢ 3-D structure of the DRA offers an additional freedom in exciting various modes in one antenna volume.
➢ Each mode can be employed for a different application, which makes the DRA a candidate for (MIMO) communication systems.
Introduction (Cont.)

MIMO System

Antenna Element

Decoupling Technique
Decoupling Techniques

- Space diversity
- Defected Ground Structure (DGS)
- Complementary Split Ring Resonator (CSRR)
- Electromagnetic Band Gap structure (EBG)
- Polarization diversity
- Excitation of multiple orthogonal modes in DRAs
Challenges with Broadband antennas

➢ Design a compact antenna element to use it in MIMO system for providing a high data rate.
➢ Operate in the lower and mm-wave bands of 5G.
➢ Introducing an effective decoupling technique is still a challenge.

Challenges with multiband antennas

➢ Designing MIMO multiband antenna with small frequency ratios is greatly required for adjacent channels applications like WLAN, WiMAX, and 5G lower bands (4.1/4.8 GHz).
Challenges with increasing number of ports for MIMO

- Designing four ports MIMO with compact size and with good isolation is much more difficult than two ports and three ports MIMO.

- Need to consider ten parameters \((S_{11}, S_{22}, S_{33}, S_{44}, S_{21}, S_{31}, S_{41}, S_{32}, S_{42} \text{ and } S_{34}) \) when designing a four ports antenna.

- Designing four ports MIMO system with single element is still a challenging task.
Contents

➢ Introduction
➢ Problem Statement
➢ Objective
➢ Proposed Work/ Results
➢ Conclusion
Objectives

➢ To design a compact dual broadband antenna for 5G applications to operate at both the lower and upper bands for the long and short distances 5G systems.

➢ To develop and introduce MIMO antenna for 5G by reducing the coupling between the two antennas using defected electromagnetic band-gap (EBG) structures by using different unit cells.

➢ To design quintuple bands with small frequency ratio rectangular dielectric resonator antenna (RDRA) for WLAN, WiMAX and 5G applications.
Objectives

➢ To construct multiband DRA MIMO with good performance.

➢ To use the advantage of the DRA to excite various orthogonal modes to develop the MIMO using single DRA element.

➢ To develop new technique for coupling reduction and use it as the main idea for four ports single element DRA extension.
Contents

➢ Introduction
➢ Problem Statement
➢ Objective
➢ Proposed Work / Results
➢ Conclusion
Part 1

A Compact CPW-Fed Slot MIMO Antenna for 5G Applications
Introduction

Slot antenna basics

- A slot antenna is about $\lambda/2$ elongated slot, cut in a conductive plate and excited in the center.

- The length of a slot determines the resonant frequency, the width of the slit determines the broad bandwidth of the slot radiator.
• **First**, a CPW-Fed rectangular slot antenna is designed with size 13X10 mm2 to generate the 4 GHz bandwidth at center frequency 7.5 GHz.

• **Secondly**, a triangle strip is embedded at the edge of the rectangular slot.

• **Third**, a rectangular patch is added at the end of the transmission line.

• **Finally**, to improve the matching at the lower bandwidth, shunt stubs are embedded in the corner of the slot.
Simulated reflection coefficient for all steps (a) lower band and (b) mm wave band
Surface currents distribution

- At 3 GHz, the current distributes along the slot with the shunt stubs, around the triangle strip and along the rectangular patch as shown in (a).

- At 4.5 GHz, the current concentrates around the patch, the transmission line and along some areas from the slot as shown in (b).

- At 6 GHz, 28 GHz and 38 GHz, as expected, the region of the current distributions are smaller than the lower frequencies as shown in (c), (d) and (e).
Proposed Antenna

Geometry and dimensions of the proposed antenna

<table>
<thead>
<tr>
<th>Geometrical parameters of the antenna (all dimensions are in mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_s</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>W_p</td>
</tr>
<tr>
<td>4.6</td>
</tr>
</tbody>
</table>
Simulation and Measurement Results

Reflection Coefficient

(a) Simulated and measured lower reflection coefficient and (b) Simulated mm-wave reflection coefficient
Simulated Radiation Patterns

(a) 4.5 GHz

(b) 6 GHz

(c) 28 GHz

(d) 38 GHz
MIMO Antenna Configuration

Dual elements MIMO CPW antenna

Geometry of the parallel two ports MIMO

Simulated S-parameters of the parallel dual elements MIMO for the lower band

Simulated S-parameters of the parallel dual elements MIMO for the upper band
MIMO Configuration (Cont.)

Polarization diversity

Geometry of the polarization diversity dual elements MIMO CPW slot antenna

Simulated S-parameters of the polarized diversity dual elements MIMO antenna
Filter structures with similar and defected EBG Structures

(a) Geometry of similar and defected EBG structures connected with microstrip lines,
(b) Simulated S_{21} parameters of the EBG structures.
MIMO Antenna Results

Geometry of the orthogonal two ports MIMO antenna with EBG

Simulated and measured S-parameters
According to the MIMO performance evaluation parameters, the results show good performance of this MIMO CPW slot antenna.
Part 2

Small Frequency Ratio Multi-Band MIMO RDRA
Antenna Geometry

Geometry of the proposed multiband RDRA

Rogers RT6010
$\varepsilon_{dra}=10.2$

Rogers RO4003
$\varepsilon_s=3.55$
Thicknes$=h$

Antenna Geometrical Parameters in mm

<table>
<thead>
<tr>
<th>W_s</th>
<th>L_s</th>
<th>h</th>
<th>W_f</th>
<th>L_f</th>
<th>S</th>
<th>W_{slot}</th>
<th>L_{slot}</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>30</td>
<td>0.813</td>
<td>2</td>
<td>15.8</td>
<td>3</td>
<td>1.5</td>
<td>17.5</td>
<td>18</td>
</tr>
<tr>
<td>b</td>
<td>d</td>
<td>W_m</td>
<td>L_{s1}</td>
<td>L_{s2}</td>
<td>L_{s3}</td>
<td>L_{sx}</td>
<td>y_1</td>
<td>y_2</td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>2</td>
<td>9</td>
<td>6.5</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>
Antenna Design Procedures

➢ Aperture Feeding Approach

The proposed antenna without VMSPs, 3D and Top views

The antenna reflection coefficient in terms of the slot length (L_{slot})

Slot as a resonator

\[
\lambda_g = \frac{\lambda_0}{\sqrt{\varepsilon_{eff} \mu_{eff}}} \quad \varepsilon_{eff} = \frac{H_{total}}{h_d / \varepsilon_{dra} + h / \varepsilon_s}
\]

Slot as a feeding

\[
H_x = A \frac{k_y^2 + k_z^2}{j \omega \mu_0} \cos(k_x x) \cos(k_y y) \cos(k_z z)
\]

For TE_{111} mode, the component H_x is maximum at $y=0$ and $z=0$
Geometry of various antennas used in the design procedure, (a) One VMSP, (b) Two VMSPs and (c) Three VMSPs (Proposed antenna)

Effect of adding VMSPs on the reflection coefficient
E-field distribution

Simulated E-field distribution inside the proposed RDRA in both yoz and xoz planes at, (a) 3.5 GHz. (b) 4.1 GHz. (c) 4.8 GHz. (d) 5.2 GHz
Measurement Results and Discussion

Fabrication of the proposed quintuple-band RDRA

Simulated and measured reflection coefficient of the quintuple-band RDRA
Measurement Results and Discussion (Cont.)

Radiation Pattern

YZ Plane

XZ Plane

YZ Plane

XZ Plane

(a) 2.4 GHz

(b) 3.5 GHz

(c) 4.1 GHz

(d) 4.8 GHz
The fabricated prototype provides a good measured gain of 2.65 dBi, 3.7 dBi, 3.3 dBi, 2.73 dBi, and 4.68 dBi at 2.4 GHz, 3.5 GHz, 4.1 GHz, 4.8 GHz, and 5.2 GHz, respectively.
Parallel Configuration

Parallel scheme dual elements MIMO DRA

Simulated S-parameters of the parallel dual elements MIMO DRA
Proposed Dual Elements MIMO DRA

Orthogonal Configuration

Orthogonal scheme dual elements MIMO DRA

Isolation performance comparison between parallel and orthogonal schemes of MIMO DRA
MIMO RDRA Results

Fabrication of the proposed MIMO DRA

Measured and simulated reflection coefficient of the proposed MIMO DRA

Measured and simulated isolation of the proposed MIMO DRA
MIMO Performance Evaluation

Envelope Correlation Coefficient

Envelope correlation coefficient (ECC)

Total Active Reflection Coefficient (TARC)

Total active reflection coefficient (TARC)
Part 3

FOUR PORTS MIMO SINGLE ELEMENT DRA
As compared with the multi antenna MIMO system, a single-element antenna is more attractive because its size is more compact.

Thus far, in the previous researches, studies of single-element DRAs have been concentrated on two and three ports designs only.

It is well known that the port isolation is the major challenge of MIMO antenna design.

Introducing four port MIMO DRA with single element is still a challenging task due to:

- The difficulty of generating different modes at the same frequency with low coupling between them.
- The difficulty of improving the isolation between ports of the MIMO antenna.
Solution

➢ New approach for designing quad ports single CDR MIMO antenna with satisfactory port to port isolation across wide bandwidth for x-band is introduced and based on:
 ➢ Selecting the suitable feeding techniques which are two probes and two aperture feedings. Proper configuration is adopted for the feeding structures to mitigate the coupling between the CDRA ports.
 ➢ Novel decoupling scheme which depends on VMVs is used for further isolation enhancement.
Feeding Technique

Excitation Sources for CDRA Modes
Coupling Between Excitation Sources

Magnetic fields of the probes and slots: (a) field probes align with the slots.; (b) field probes perpendicular with the slots
Decoupling Technique

Geometry of various two ports CDR MIMO antennas, (a) Without vias, (b) With one via, (c) With two vias, and (d) With three vias

H-field distributions inside the two ports CDRA MIMO at 8.8 GHz in xy-plane for, (a) Without vias, (b) With one via, (c) With two vias, and (d) With three vias

S-Parameters of the two ports CDR MIMO antenna structure with adding the vias, (a) $|S_{11}|$, (b) $|S_{21}|$
Proposed MIMO Single Element DRA

Geometry and dimensions of the proposed antenna top and side views

Geometrical parameters of antenna (all dimensions in *mm*)

<table>
<thead>
<tr>
<th>W_s</th>
<th>L_s</th>
<th>h</th>
<th>W_f</th>
<th>L_{t1}</th>
<th>L_{t2}</th>
<th>W_{f3}</th>
<th>W_{t3}</th>
<th>W_g</th>
<th>L_{f3}</th>
<th>L_{t3}</th>
<th>L_g</th>
<th>d</th>
<th>L_{p1}</th>
<th>L_{f4}</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>70</td>
<td>0.813</td>
<td>2</td>
<td>23.5</td>
<td>25</td>
<td>3</td>
<td>2.5</td>
<td>4.1</td>
<td>31.05</td>
<td>2</td>
<td>34.25</td>
<td>1</td>
<td>6</td>
<td>24</td>
</tr>
<tr>
<td>L_{t4}</td>
<td>W_{f4}</td>
<td>W_{t4}</td>
<td>d_p</td>
<td>d_s</td>
<td>W_{slot}</td>
<td>L_{slot1}</td>
<td>L_{slot2}</td>
<td>L_1</td>
<td>L_2</td>
<td>S_1</td>
<td>S_2</td>
<td>a</td>
<td>h_d</td>
<td>d_v</td>
</tr>
<tr>
<td>11.75</td>
<td>3</td>
<td>2</td>
<td>1.5</td>
<td>3</td>
<td>1.5</td>
<td>11.5</td>
<td>12</td>
<td>10.5</td>
<td>11</td>
<td>10.5</td>
<td>8</td>
<td>15</td>
<td>15</td>
<td>1.5</td>
</tr>
</tbody>
</table>
Isolation Improvement

Geometry of various antennas used in the design procedure, (a) Without vias, (b) One via, (c) Two vias, (d) Three vias and (e) Four vias (Proposed antenna)

S-Parameters of the CDR MIMO antenna structure without vias.
(a) Reflection coefficients. (b) Transmission coefficients.
Effect of adding the metallic vias on the S-parameters, (a) S_{11}, (b) S_{22} and (c) S_{21}
Results and Discussion

Fabrication of the proposed four ports single radiator CDRA MIMO. (a) 3D view, (c) Top view and (b) Bottom view

Simulated and measured reflection and coupling coefficients of the four ports single radiator DRA MIMO, (a) Reflection and (b) Coupling
6.25, 7.65, 9.06, and 8 dBi gains are achieved corresponding to port 1, port 2, port 3 and port 4, respectively.
Results and Discussion (Cont.)

MIMO performance evaluation

Envelope correlation coefficient

![Graph showing envelope correlation coefficient (ECC) over frequency (GHz).](image-url)
Contents

➢ Introduction
➢ Problem Statement
➢ Objective
➢ Proposed Work/ Results
➢ Conclusion
A compact CPW slot antenna was presented and fabricated for 5G communications.

The use of triangle strip and rectangle patch are introduced to improve the impedance matching of the antenna.

The combination of the polarization diversity and EBG techniques are used for isolation improvement between the antenna elements in MIMO system.

A multiband RDRA has been proposed for WLAN, WiMAX, and 5G applications.

Three VMSPs with different lengths are engaged at both sides of the DR along the y-axis to excite three extra modes.
The use of this technique is introduced to excite adjacent modes with a small frequency ratio.

The ECC is well below 0.01, satisfying the low ECC criteria (ECC <0.3) for a MIMO system and the diversity gain achieved by the antenna is 10 dB.

Four ports MIMO single radiator DRA has been proposed for X-band operation.

Excitation of orthogonal modes inside the CDRA is adopted for MIMO configuration.

Inserting vias inside the DRA has been used to improve the coupling by perturbing the field to be perpendicular for all ports.
Published and Submitted Work

• Journals

• Conferences

www.ejust.edu.eg
Thank you